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The dynamics of double-diffusive gravity currents 

By T. MAXWORTHY 
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Gravity currents or intrusions for which the fluid within the current contains a 
substance that gives i t  a diffusivity different from that of its surroundings are very 
common both in natural and technological applications. The interface between the 
two fluids can become the site of either a ‘fingering’ or a ‘diffusive’ type of 
instability, and vigorous convection and material exchange occurs (Turner 1975). 
This transfer of material has several important effects upon the dynamics of the 
intrusion. Horizontal momentum can be transferred across the interface to create a 
stress which in many cases dominates the more conventional viscous stresses. 
Entrainment into the convective plume beneath the intrusion and, in a container of 
finite depth, the formation of a secondary, bottom-boundary current, creates a flow 
external to the main intrusion which modifies its behaviour even more. Two cases 
have been studied: the release of a fixed volume of fluid and the injection of fluid 
a t  a constant rate for both types of interface. Several experiments on the motion 
of an intrusion for which the interface is essentially non-diffusive are presented for 
comparison. 

1. Introduction 
When light fluid is introduced into a body of denser fluid, i t  spreads at the surface 

in a predictable way if the characteristic substance (e.g. heat, a dissolved solute) that  
gives the fluids their density difference is the same (Hoult 1972 ; Simpson 1982 ; Turner 
1974; Didden & Maxworthy 1982; Maxworthy 1983; Huppert 1982). It is also well 
known that, when the two fluids have a density difference due to  substances of 
different diffusivities, the interface between them can become the site of a double- 
diffusive instability even if the overall density difference is stable. The literature on 
this latter subject, when the two fluids are not in relative horizontal motion in the 
mean, is particularly rich, and has been reviewed in detail by Turner (1973, 1974) 
and Huppert & Turner (1981). In  only a few cases have the two problems been 
combined to study the effects of these double-diffusive processes on the motion of 
the intruding fluid (Turner 1978; Ruddick & Turner 1979) or the effect of interfacial 
shear on the magnitude of the fluxes across the interface (Linden 1974). In  what 
follows, we present experiments aimed a t  gaining a basic understanding of such a 
system in the simplest possible circumstance : that of the intrusion of a sugar or salt 
solution into an ambient fluid made denser by the addition of salt or sugar 
respectively. 

It has become standard to  use sugar and salt solutions in order to run experiments 
on double-diffusive eEects because, as is required, the diffusivity of one (sugar) is 
smaller than that of the other (salt). These then serve as models for one pair of 
naturally occurring substances of major interest, salt and heat, for which the 
diffusivity ratio is large, of order 100 compared to three for the salt/sugar system. 
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FIQURE 1. (a )  Apparatus for a surface gravity current or intrusion with a constant inflow rate. The 
ambient fluid was either a salt solution or a sugar solution of density pa, in which case the fluid 
( p l )  released from behind the moveable barrier was either a sugar or salt solution respectively. ( b )  
Same tank as ( a ) ,  but  with an injector inserted so tha t  a fixed flow rate could be released into the 
ambient fluid. 

The works of Stern & Turner (1969), Turner (1975) and Shirtcliffe (1973), among 
others, have shown that the basic double-diffusive properties of such systems are 
qualitatively similar, although actual flux ratios and rates do depend on the 
diffusivity ratio. For experimental convenience we use the sugar/salt combination 
in what follows. 

We also present two theoretical models which we believe help clarify the role of 
these phenomena in two cases, the release of a constant volume and the injection of 
a constant flux of lighter fluid. I n  both cases the experiments tend to support the 
models to some extent, although several effects, which while not measured directly 
were observed qualitatively, cloud the issue and require more detailed study in the 
future. 

Double-diffusive phenomena have important applications in both natural systems, 
for example in the study of the dynamics of intrusions in the oceans and atmosphere, 
and in technology, where problems involving the motion of liquid natural-gas spills 
(Turner, private communication) and of sewage and waste water disposal (Fischer 
1971) have been thought to  involve them. Thus a good understanding of such effects 
is desirable if we wish to say we truly understand the overall problem of their influence 
on the natural environment. 

2. Apparatus 
The apparatus used in these experiments was similar to that used in Didden & 

Maxworthy (1982 hereinafter referred to as DM), although i t  is different in some 
details. The test tank was smaller, being 2 m long, 40 om deep and 15 cm wide (see 
figure l ) ,  and was constructed of plate glass to facilitate observation of the density 
field by a shadowgraph technique. 



Dynamics of double-diffusive gravity currents 261 

Two types of fluid release were used. The first, which had no counterpart in the 
experiments of DM, consisted of a dammed section a t  one end of the tank from which 
a fixed volume of light fluid could be released (figure 1 a ) .  The second consisted of 
a plenum chamber and slit connected to a flow meter and fluid reservoir in order to 
produce a uniform inflow of constant flow rate (figure 1 b ) ,  as in DM. 

We have run a variety of experiments with each of these configurations, including 
a series with fixed initial fluid volume, but with different values of initial depth h, 
and density ratio (see below), and a series with fixed initial flow rates Q. I n  each series 
of experiments three different interface types were considered : ( i )  an essentially 
non-diffusive interface, i.e. brine solution intruding into a brine solution of higher 
density ; (ii) an interface unstable to a ‘salt-fingering ’ instability produced by 
introducing a sugar solution over a heavier brine solution; and (iii) a ‘diffusive 
interface’ that is a sharp convecting transition zone produced by running a salt 
solution over a sugar solution. 

The important density ratios used here include Aplp,, where Ap = pa-pI (see figure 
l ) ,  and the ratio of the contributions of the two components to  the density difference 
across the interface; PASIaAT = Rp for the ‘diffusive’ case and aAT/PAS = for 
the ‘fingering ’ interface, using the accepted nomenclature for each of these quantities. 
Here the density of the faster-diffusing solution (brine) is po( 1 + ctAT), and that of 
the slower-diffusing substance (sugar) po(l +PAS), where po is the density of the pure 
solvent, in this case water. Both Rp and Ri vary between unity and infinity, with 
the most vigorous convection taking place when the ratio is close to  unity. 

In  all cases the length of the gravity current was measured as a function of time 
by placing both a lengthscale and a clock in the field of view of a fixed 35 mm camera 
fitted with a lens of long focal length. 

3. Theoretical preliminaries 
3.1. Plane, diffusive or Jingering gravity currents 

Here we anticipate, to  some extent, the results to be presented in the following 
sections and discuss a series of models that  appear to have some relevance to the 
experimental results. We start by noting that, owing to the strong double-diffusive 
instability that occurs, net amounts of material and horizontal momentum are 
transferred across the interface between the two fluids. This we show diagrammatically 
in figure 2, where V is a measure of the vertical velocity across the interface due to 
the instability,? U is a representative velocity within the intrusion itself and is taken 
equal to L/ t  (see figure l ) ,  and U ,  is the velocity external to  the intrusion caused, 
for example, by entrainment into the external plume of unstable material, as will be 
explained in $4. Also, as will be shown in $5, B can be estimated from the flux laws 
measured by Shirtcliffe (1973) and Griffiths & Ruddick (1980), assuming that the 
quasi-steady-state results reported there hold in this case. 

As has been shown in DM in all experimental laboratory-scale results to date, the 
so-called ‘bottom or solid boundary current ’ is the one that is found, because even 
a nominally free surface acts as a solid boundary owing to contained impurities. In  
the present notation the magnitude for the ‘bottom ’ force per unit width acting along 
the whole length of the current is ElB cc ,uUuL/h, where ,u is the coefficient of viscosity 

t Since the characteristic upward velocity V, and the downward velocity V, are of the same 
order of magnitude, we use the general designation V to represent them in the order-of-magnitude 
analyses that follow. 
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FIGURE 2. Model of the interface between the intruding fluid moving with velocity U and the 
external fluid moving with velocity U,. The instability of the interface causes an interchange of 
fluid between the two, characterized by averaged vertical velocities V ,  and V,. 

and h a representative thickness of the self-similar intrusion. We can now distinguish 
two extreme cases. 

3.1.1. Intrusion or (U)-dominated case. Firstly, we assume that U, is small, so that 
the loss of horizontal momentum from the intrusion itself dominates. Owing to this 
transfer of momentum the interface is subject to a horizontal force/unit width 

FDD PUVL, (4) 

so that FDD/FB G 9 K V H l v ,  where v = ,u /p  is the kinematic viscosity. 
As in Huppert (1982) and Maxworthy (1982), it  is now convenient to consider a 

fairly general release-rate relationship, in order to cover as wide a range of cases as 
possible, such that the intrusion volume per unit width of the channel varies as the 
power of the time: 

Lh cc qta. (5 )  
Hence vqta 

9t-. 
VL 

If we assume that initially the motion L(t) is governed by the relationship for a 
buoyancy-viscous balance presented in Huppert ( 1982) and verified experimentally 
in DM and Maxworthy (1982), i.e. 

(6) L = k , { y j  g’p a t(3a + 1 ) / 5  

where g’ = gAp/p and g is the acceleration due to gravity. Substituting (6) into the 
expression for 9 leads to an estimate for the transition time t,, at which the 
interfacial stress becomes important : 

v49’ 
t,, = ca- (7a )  v y  ’ 

where Ca is assumed to be of order unity. 
An equivalent and somewhat more revealing expression for tTR can be found by 

first deriving the needed expression for the evolution of a double-diffusive gravity 
current by equating the buoyancy forcelunit width, from DM, 

to the interfacial force/unit width, (4), only, assuming that the bottom force is 
negligibly small, i.e. that t 9 tTR. Using (5) i t  can then be shown that? 

t The axisymmetric case can be treated in a similar manner, and the results are given in the 
appendix. 



Dynamics of double-diffusive gravity currents 263 

At t = tTR, (6) and (9) must be identical so that an alternative to  ( 7 a )  can be 
derived : 

Thus, in a manner entirely equivalent to the discussion of inertial-buoyancy to 
viscous-buoyancy transitions found in Huppert (1982) and Maxworthy (1982), we 
find a critical value for a of in this case. This suggests that for a > t, which includes 
our present case of constant flow rate (a  = 1) ,  the transition will be from a viscously 
controlled to double-diffusively controlled current. While for a < our case of a 
constant volume release (a = 0) is included here, the opposite should occur. However, 
we will show that other effects dominate before this latter possibility can be realized 
end so we can make no comment on this interesting question yet. 

3.1.2. Evolution dominated by the outerJEow (Urn) .  The second case assumes that the 
interfacial stress is dominated by the transfer of horizontal momentum from the 
ambient fluid, moving with velocity U ,  (figure 2), into the intrusion, and that the 
stress due to the slug motion itself can be ignored. Now the force balance becomes 

Apgh2 x pU, V L ,  

so that the spreading relationship becomes 

and the transition time is given by 
1 5 / ( 3 - a )  

I n  this case we find a critical condition a t  a = 3, with transition from a viscously 
to a double-diffusively controlled current occurring when a < 3. This does not 
exhaust all of the possible transitions, since i t  is also reasonable to expect that  under 
some conditions a flow initially dominated by momentum transfer from the slug itself 
will become dominated by transfer from the ambient fluid.t Under these circumstances, 
the transition time is given by 

1 2 / ( 3 - 2 a )  1 / ( 3  - 2 a )  

, 

Current dominated by U 

L L 

Current dominated by U ,  

TABLE 1 

t We will call this a U-to-U, transition in what follows. 
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with a critical value of a of $. I n  this development we have deliberately ignored the 
possibility of direct transitions from a state of inertia-buoyancy balance, but i t  should 
be realized that three more transition times can be derived to account for such 
possibilities! Fortunately these do not appear to play a role in the experiments to 
be described, and will not be written down formally or discussed except briefly in 
the case discussed in $3.2. 

As a summary, we present in table 1 the equations that will be of use in interpreting 
the experimental results and to which must be added the U-to-U, transition time for 
the case a = 1 : 

3.2. Plane non-diffusive gravity current 

In  the experiments to be described, we contrast the behaviour of the double-diffusively 
controlled current with that for which the viscous bottom force is the only retarding 
force. For these latter cases, Huppert (1982) gives, from (6), for a = 1 

a result that  has been confirmed experimentally in DM and Maxworthy (1982), while 
for a = 0 

L = k‘‘ ~ ti. 

In  this latter case, release of a constant volume of dammed-up fluid results in an initial 
slumping phase (Huppert & Simpson 1980), during which time the head velocity is 
constant. After the head has travelled a distance about equal t o  ten times the length 
of the original dammed region, a wave of depression, reflected from the rear wall of 
the tank, catches up with i t  (Simpson 1982). The bulbous headwave form disappears, 
and often a phase of self-similar inertial-buoyancy balance follows, in contrast with 
the non-similar local control at the head characteristic of the initial motion. The 
motion of this inertial phase can be found by equating the buoyancy force (8) to the 
inertial force : 

4 K pU2h K p-h so that U2 K g’h. 

(23) O K 7  

L2 
t 2  

Under this balance the spreading law becomes 

L = k, {g’g}i t j .  

Then at a transition time given by 

(Huppert 1982 ; Maxworthy 1982) the viscously controlled regime follows (equation 
(23)). 

4. Experimental results 
4.1. Release of a $xed volume of jluid 

We start with one of the most interesting results of the present study, which was 
obtained for the case of a fingering interface when Ri was close to unity. I n  figure 
3, we show the length L of the intrusion from its initial position (see figure 1) as a 
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FIGURE 3. Release of a fixed volume of sugar solution of density 1.0425 over a salt solution 
(p, = 1.045, Rp = 1.06) to form a fingering interface, and for various values of h, (see figure 1). 
Curves for a non-diffusive interface, salt solution over salt solution, with the same densities are 
shown for comparison. -0-, ha = 7.5 cm; ---A-, (diffusive, d),  -4- (non-diffusive, nd), ha = 

ha = 2 em. The asymptotic values of L are also shown as a function of the initial depth ha; the slope 
of this line -A- is unity. 

function of time t since the withdrawal of the retaining dam. Several effects are 
immediately apparent. The intrusions with the larger initial volume lengthen rapidly 
a t  first, a t  a constant velocity. However, later in their travel double-diffusive effects 
become dominant and the intrusions slow and eventually stop !This latter phenomenon 
is not seen in intrusions for which double-diffusive effects are absent (also plotted in 
figure 3). Visual observation of these interfaces show several effects which interact 
to bring about the observed behaviour. Initially the head of the wave looks essentially 
the same as that for which double diffusion is absent (figure 4 ( a 4  or e ) .  A small flux 
of sugar solution can be seen leaving the intrusion, but the high inertia of the flow 
and perhaps mixing and shear across the interface apparently reduce any important 
dynamical influence it might have. As the intrusion begins to  slow (perhaps after the 
reflected wave from the endwall catches up to the head (Simpson 1982), but more 
importantly under the influence of both viscous and double diffusion), the head wave 
loses its bulbous shape, and convection from the main body of the intrusion becomes 
intense (figure 4e or f -k ) .  Ambient fluid is entrained into this falling plume, and 
ultimately falls to the bottom of the tank and becomes a bottom gravity current, 
the front ofwhich is indicated by a dotted curve in figure 4 ( k ) .  Here the double-diffusive 
configuration is reversed so that fluid with an excess of sugar is riding beneath a brine 
solution. Under these circumstances a thin ‘diffusive ’ interface is formed, across 
which further material exchange can take place also. The details of this interesting 
problem are left until later, when we study the dynamics of this interface in a related 
experiment. I n  the present context, the appearance of the secondary gravity current 
and entrainment into the plume that feeds i t  is important because the flow induced 
by these motions interacts with the main intrusion, slows it down and eventually stops 
it. Diagrammatic details of the flow field are shown in figure 5 (a). I n  figure 5 ( 6 )  we 
speculate that even if the tank were very deep, so that a bottom gravity current could 

5 cm;-x-(d),-~-(nd),h, = 4 cm;-0-(d),-Q-(nd),h, = 3 cm;-+-(d),-+-( nd), 
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FIGURE 5 .  (a) Diagrammatic view of the formation of a bottom gravity current from the heavy 
fluid lost from the intrusion. The ambient fluid entrained into this region creates a backwards flow 
against the general forward motion of the main intrusion ( b )  Diagram to show how a n  opposing 
flow would be formed even in a very deep tank. Entrainment into the downward-moving plume 
and its feeding jet forms an external flow against the flow of the intrusion. 



Dynamics of double-diffusive gravity currents 269 

10 L I I 1  a , , I l l  I I I 1 1 1 1  I I I I  

1 10 100 5 00 

t (9 
FIQURE 7 .  Behaviour of a fixed release (h,  = 7.5 cm) for a fingering interface and three 

density ratios: -x-, p1 = 1.040; -+-, 1.0420; -0-, 1.0425. pa = 1.045. 

not form, entrainment into the jet a t  the endwall would still create a counter flow 
to oppose the motion of the surface current. 

In  the following figures, we compare various different cases in order to show the 
relative importance of the several effects under our control. I n  figure 6 we display 
the relative effects of the three types of interface for a series of otherwise fixed initial 
conditions. Not unexpectedly, the curves are ordered by the vigour of the convection 
a t  the interface, for a given density ratio. The non-diffusive interface eventually 
travels farther in a given time, followed by the diffusive and finally the ‘fingering’ 
interfaces. As discussed in $5,  this is presumably the result of the larger convective 
mass flux that passes through the fingering interface, compared with the amount 
passing through the diffusive interface for the same density difference. 

In  figure 7 results for a fingering interface are shown for various density ratios; 
they are ordered so that the current with the larger initial density difference travels 
faster. Only in the case of the smallest A p  does the current actually stop, however, 
while the other two have not been followed until that state is actually reached, if 
i t  ever is. However, in no case have we observed an extended temporal dependence 
requiring the balance, between interfacial and buoyancy force, described by (17)  ; the 
flow appears to be quickly dominated by the external velocity field for the range 
of parameters we have studied in the present experiments. 

4.2. Injection at a constant $ow rate 

4.2.1. Diffusive interface. Many of the mechanisms controlling the motion of a 
double-diffusive intrusion can be more clearly seen in this case. We start with a flow 
rate for which the intrusion always stays well ahead of any bottom current which 
may form (figure 8). With decreasing Rp and hence increasingly vigorous convection, 
the slopes of the curves decrease from 0.76 to 071. Two cases of a non-diffusive 
interface, i.e. brine over a heavier brine solution, are shown for comparison, while 
numerous other comparisons can be found in DM and Maxworthy (1982). It appears 
that  the motion of the slug is governed from the very beginning by the stress a t  the 
double-diffusive interface, i.e. any transition time is less than one second or so. 

I n  figure 9 the upper curve for the case of a t  least vigorous convection again 
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FIGURE 8. Intrusion with a constant inflow. Results are plotted for three values of R,,, showing the 
decrease in slope as the vigour of the convection from the diffusive interface (salt over sugar 
solution) increases. No distinct bottom gravity current is formed in these cases. The chain-dotted 
lines -..- and -.- give the predictions of Huppert’s (1982) viscous theory for the upper two 
cases, -+- and -0--. p = 074  cm2/s for all cases. 

conforms to  the results shown in figure 8, even though the flow rate is lower. In  the 
next-lower curve, convection produces a bottom current which just catches up with 
the leading edge of the intrusion by the time it has reached the end of the tank. The 
third-lower curve, a t  the same flow rate but with Rp closer to unity, shows a small 
but distinct increase in slope as the head of the gravity current passes that location, 
followed by a very rapid increase when it  interacts with a reflected wave which is 
moving back along the newly formed interface and which was created by the 
reflection of the gravity current from the endwall of the tank. The point is further 
emphasized in the lowest curve, for an even smaller flow rate, where three distinct 
slopes are found : n = 0.65 before the gravity-current head reaches the leading edge 
of the intrusion, 0.71 after, followed by 0.9 upon interaction with the reflected wave. 
These processes are shown diagrammatically in figure 10 and photographically, for 
the more dramatic fingering interface, in figure 11. I n  the first case (figures 10a, 11 u-f) 
the advancing bottom current creates a strong backwards flow against the intrusion, 
slowing i t  down (see $ 5 ) .  However, this current, upon interacting with the endwall, 
is reflected as an internal surge, which creates a strong forward flow, which then 
interacts with the intrusion to force i t  forward (figures l o b ,  llg-j). 

Finally, in figure 12 we show data on what we believe to be, after much 
deliberation, a transition from a current controlled by momentum loss from the 
intrusion to  one controlled by momentum transfer from the ambient, a U-to-U, 
transition. The corresponding viscous solutions are shown on the figure as chain-dotted 
lines, and they are well above the corresponding interfacial-stress-controlled curves, 
as is also the case in figure 8 and 9, while a break to a slope of 0.67 is quite clear. 
Further discussion of this result is left to $ 5 .  
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FIGURE 9. A series of cases at lower flow rates for the diffusive interface, and showing the increased 
importance of interaction with the bottom gravity current as R,, becomes clover to  unity. 
Coincidentally, the trajectories of the bottom current for the two cases -0- and -a- were 
virtually identical and are shown here as one line, - - - -. For the lower curve -a- three regions 
can be distinguished. The first, with n = 065, occurs before the bottom current reaches the front 
of the intrusion; the second, n = 071, occurs after this time, and the third, n = 0 9 ,  is formed 
by interaction with a wave on the bottom current formed by reflection of the current head from 
the endwall. The chain-dotted line gives the prediction of the viscous theory for the uppermost 
case. ij = 038 cm*/s for all cases except the lower one, for which Q = 031 cm2/s. 

1 
FIGURE 10. Diagrammatic view of the two main phases of flow due to  interaction with the bottom 
current. (a) Interaction with flow in the neighbourhood of the head, in which case U ,  is an 
increasing function of time. ( 6 )  Interaction with the reflected wave, in which case the external flow 
is reversed. 
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FIauRE 12. Largest value of inflow rate showing a probable transition from intrusion controlled 
by momentum exchange from the slug ( U )  to one controlled by momentum interchange from the 
external flow (Urn) .  The chain-dotted lines give the predictions of the viscous theory for all three 
cases sequentially. = 1.57 cmz/s for all cases. 

4.2.2. Fingering interface. Most of the points raised above are further emphasized 
when considering the more vigorously convecting fingering interface. I n  figure 13 note 
a very small slope before the head of the bottom current reaches the leading edge 
of the intrusion, followed by a more rapid increase after its passage. I n  this case the 
bottom current is much more distinct than in the previous cases. Furthermore, in 
figure 14 the intrusion outruns the bottom gravity current, but a large external 
velocity U ,  is still produced by entrainment into the very intense convective plume 
that is formed. In  figure 15 we present a series of photographs of the distortions of 
a dye streak, which indicates very clearly the order of magnit'ude of the velocities 
and shears being impressed upon the motion of the upper surface flow. 

Finally, we show in figure 11 ( k )  the flow after a long time, with continued 
injection. From the distortions of streaks shown there, it is apparent that a bottom 
flow from right to  left still persists, probably owing to the greater convective activity 
near the injector, where fresh sugar solution is being introduced. The motion in the 
outer fluid, close to the upper surface, is in the opposite direction and still opposes 
the motion of the primary intrusion. 

5. Discussion 
In $4 we have presented a series of experimental curves of intrusion length L versus 

time t under a variety of circumstances : for two types of release (constant volume and 
constant inflow rate) and three possible types of interface between the intrusion and 
its surroundings. Based on flow-visualization studies, we have found that a flow is 
formed in the main body of fluid by vigorous convection from two of these interface 
types. This flow, external to  the main current, has a profound effect on its motion. 
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FIGURE 14. L versus t for the more vigorously convective fingering interface. At a moderate flow 
rate, such that  the gravity current is always well behind the front of the intrusion. 9' = 0 7 4  cm2/s. 

seems that it too should decrease as the convection is reduced. This suggests that 
the constant lengths found in our experiments are a transient phase of a longer-term 
evolution in which the intrusion eventually spreads the whole length of the tank over 
a larger timescale. 

The results shown in figure 6 and 7 are also consistent with this basic idea, with 
the more vigorously convecting systems, i.e. large V ,  tending to  produce shorter slug 
lengths. Also, in no case do we see an extensive region of slug-dominated interfacial 
stress represented by the power-law behaviour ti, (17), suggesting that if i t  exists i t  
is only a transitory phase between the inertial, head-controlled, constant-velocity 
regime and one dominated by the external flow. All of this, plus the fact that  U ,  
is also a function of time during the transition to  a constant length, makes it 
impossible at this stage to test either of the estimates (18) and (20) of transition time 
from one regime to  another. 

The results found for the case of a constant inflow (a = 1) are more useful in 
unravelling some of the problems with which we are still faced. At moderate flow rates 
and for a diffusive interface (figure 8) for which the bottom gravity current is not 
an important factor, the slope of the L versus t lines are reassuringly close to that 
predicted in (13), when the convection is the least vigorous (upper curve and possibly 
the next lower). As the magnitude of the convection increases, this slope is reduced. 
Since the flow apparently still remains similar, reflected in the fact that  the evolution 
can be described by a power law, i t  is unlikely that we are seeing the effect of the 
outer flow, since this is an additive effect not a multiplicative one. We suggest, based 
on the experimental observation of a large volume flux from the intrusion (figure 1 l ) ,  
that  this decrease in slope is due to  an effective value of @ which is also a decreasing 
function of time and not a constant as assumed. To rationalize this comment one can 
show that the difference between the downward velocity V, and the upward velocity 
V, a t  a salt-sugar interface is given by 

6.3 x 10-3 
V,- V, = 

P 

for the diffusive interface, as an  example, where Rf is the flux ratio, which has an 
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almost constant value of 0.6 in this case (Shirtcliffe 1973). This velocity difference 
is positive for all cases considered here, so that there is a net loss of volume from the 
intrusion as time progresses, as already noted. This loss is further enhanced by the 
increase in slug length with time, which increases the area over which material 
transport can take place. At the same time g' is slowly increasing and V decreasing, 
but we suggest, based on (13), that  the loss of volume more than compensates for 
this and causes the effective slope to be below the predicted value of i. Only a t  the 
largest value of Rp or when @ is large (figure 12) are these effects small, and we then 
obtain close agreement with the prediction, otherwise the volume loss is an important 
effect and the theory is no longer valid except as an upper bound on the observed 
behaviour. 

At higher flow rates (figure 12), apparently we see the real effect of the external 
flow, a transition from a intrusion-dominated momentum exchange to one dominated 
by the external flow. Here again, no bottom gravity current is formed, and the 
external flow is caused only by entrainment into the convecting plume beneath the 
intrusion. Unfortunately, the evidence for this transition is not strong, because of 
the experimental error involved in determining L from the photographs. However, 
the facts that the measured curves have a slope close to 0.75 and are substantially 
below the viscous predictions (Huppert 1982) make us feel fairly certain that the 
initial portions of the curves are of the type described by (13). 

In  these cases (and also for the two upper curves of figure 9 and the upper curve 
of figure 13, discussed in more detail later) we have sufficient information to estimate 
values for E l ,  (13), and C,, (14). As mentioned before, estimation of k , ,  (15), and C;, 
(16), requires a knowledge of U ,  which we do not have to sufficient precision, except 
to say that is of the order of 1 cm/s in many of the eases considered. We use the flux 
laws measured by Shirtcliffe (1973) for the diffusive interface and by Griffiths & 
Ruddick (1980) for the fingering interface to estimate V in each case. We ignore the 
effect of shear on these fluxes, as documented by Linden (1974), although i t  could 
be an important effect which causcs some of the scatter in the calculated values of 
E,. Since all of the other quantities in the equations are also known, we can then 
calculate values for the multiplicative constants of interest. 

I n  summary, Shirtcliffe (1973) gives the downward salt flux through a diffusive 
interface as 

(25) 
( o l ~ ~ ) t  4 = 6.30 x 10-3-R;12 g emp2 s-l, 

ol 

while Griffiths & Ruddick (1980) give the downward sugar flux through a fingering 

(26) 

interface as 

For simplicity, to estimate the vertical velocity V we assume that the flux given by 
(25) or (26) is uniformly distributed over the interface according to the formula 

4 = p V A I  

(PAX)$ 
P 

Fs = 5.50 x ~ Ri6  g ernp2 spl. 

where I is either T or X, and y is a or P respectively. Combining this with (25) or 
(26) gives for the diffusive interface 

6-30 x 1 0 - 3  
V =  ( C ~ A T ) ~ R ; ~ ~ . ~  cm/s, 

P 
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and for the fingering interface 

5.50 x 10-3 
V =  (PAX); Rp6 cm/s. 

P 

These estimates for V are shown in table 2,  and, when combined into (13) and (14), 
give the estimates for k ,  and C, = ( k , / k v ) 2 0 ;  these are also shown in table 2 ,  together 
with the calculated values of tTR. 

Figure 8, case l a  
l b  

Figure 9, case 2a 
2b 

Figure 12, case 3a 
3b 
3c 

Figure 13, case 4 

V x 1 O4 cm/s k ,  c, x 10'2 h R  (s) 

1.03 0 1 8  0.1 
364  0 2 3  13-5 
1.03 0.15 0.0026 
3.64 021  2.18 
1.03 018 0.1 
3.64 0.24 31.5 
5 6 2  0 2 6  156 
3.91 0.2 1 2.18 

Average values, El = 0.21, 

TARLE 2 

= 2.18 x 

3 
0 4  
0 3  
0 2  
0 7  
0.2 
0.05 
002 

In  view of similar results found for gravity currents with variable inflow (Maxworthy 
1982), i t  is not surprising that the values of C, are so small and so scattered. This 
reflects the fact that the coefficient k ,  is somewhat smaller than one might at first 
believe based on the usual expectation that such quantities should be of order unity 
in order-of-magnitude calculations such as these. Because the slopes of the two curves 
are so closely matched (0.8 compared with 0.75) small variations in k ,  make enormous 
differences in the transition time, as reflected in the fact that C, is the ratio k J k ,  
raised to the power 20. 

Unlike the situation in Maxworthy (1982), where we knew all of the independent 
variables precisely, in the present case our estimate of V might be cause for some 
concern. For example, a measurement error in the density of only 0.3 yo for any of 
the solutions results in, typically, a 60 yo error in the value of V and a corresponding 
error of 13 Yo in k, ,  easily sufficient to explain the variations in k ,  found in table 2. 
At the moment the value of k ,  = 0.21 is the best estimate for the quantity until more 
accurate and complete experiments are performed in the future. As in Maxworthy 
(1982) the possibility arises that, although the flow during any one experiment 
remained similar, the coefficients of proportionality in (4), ( 5 )  and (8) may in fact vary 
from experiment to experiment, owing, among other things, to incrcased mixing at  
the higher flow rates. Resolution of such a question requires detailed measurements 
of velocity and density distribution within the flow, which are beyond the scope of 
the present simple experiments. Similarly, the use of the results of figure 12 to 
calculate values of k ,  and C, is difficult without a knowledge of the variation of U ,  
with the independent variables, and this calculation too must await a more complete 
experimental investigation. 

It is at the lower flow rates (figure 9) that we begin to see the dramatic effects of 
the bottom gravity current. In  the lower two curves the initial slope is small and close 
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to Q by the suggesting control outer flow, (15). This condition is even more strongly 
in evidence for the fingering interface (figure 13). I n  fact in this latter case, the slope 
is substantially below the value of $ predicted by our simple model. We suggest that, 
as in the case of the diffusive interface, this is likely to be due to a time-dependent 
decrease in the total volume of fluid in the intrusion, and hence a p that is a decreasing 
function of time, the effect of which overwhelms the opposing changes in g‘, V and 
possibly U,, (15). The subsequent increase in slope after passage of the bottom, 
secondary gravity current is harder to explain, since the outer flow U ,  must increase 
in magnitude owing to flow over the gravity current. This process is shown 
diagrammatically in figure 10 (a)  and photographically in figures 11 (a-f ). One 
possibility is that the passage of the bottom current changes the pressure field a t  the 
bottom of the intrusion, tending to squeeze and thin it; this in turn would cause an 
increase in its velocity, and hence increase the slope of the L versus t curve. This result 
can be most readily seen by noting that the increase in external velocity at the bottom 
of the intrusion, caused by gravity-current passage, would produce a decrease in 
pressure. Hydrostatic balance within the intrusion requires that it become thinner 
to accommodate this pressure decrease. 

Thereafter, the nose of the bottom gravity current interacts with the endwall of 
the tank and is reflected along the newly formed interface as an internal hydraulic 
jump. This jump travels back along the tank and interferes further with the slowly 
advancing intrusion. Now, however, U ,  has changed direction in the flow over this 
wave, so that the external flow now not only accelerates the motion of the intrusion 
(figures lob, 11 pj) but also squeezes it further, and the slope is even larger than that 
for a viscously controlled current (lower two curves of figure 9). I n  the case of the 
fingering interface (lower two curves of figure 13), this latter interaction took place 
after the completion of the experiment and was not recorded. For both types of 
interface (upper two curves of figure 9 and upper curve of figure 13) the less-active 
interfaces propagate with slopes close to the value of a predicted in $3. Finally, the 
fingering interface a t  a moderate flow rate (figure 14) conforms to the idea that the 
net loss of intrusion volume is responsible for the decreased slope. 

6. Conclusions 
We have measured the spreading rates of two-dimensional double-diffusive intru- 

sions, considering both ‘fingering’ and ‘diffusive’ interfaces and two types of fluid 
release, a constant volume and constant flow rate. In  all cases considered, the transfer 
of mass and momentum across the interface quickly dominates the motion of the 
intrusion, and under suitable circumstances simple order-of-magnitude arguments 
can be used to develop equations that describe the motion of the leading edge of the 
intrusion with reasonable accuracy under some circumstances. The major unknown 
factor is the magnitude of the external velocity imposed upon the layer by entrain- 
ment into the convective plume beneath the intrusion. In a relatively shallow tank, 
such as ours, this convective plume can also, under some circumstances, create a 
secondary, bottom gravity current, and the flow created by the motion of the latter 
can also interact with the main intrusion and affect its motion in a manner that, 
although it cannot be modelled a t  present, can be understood qualitatively and in 
a way that gives hope for a suitable model in the future. 
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of Earth Sciences, Australian National University, Canberra, as the guest of Professor 
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Appendix. Axisymmetric double-diffusive gravity currents 
For the sake of completeness and because of itsrlikely importance in natural and 

technological flows, we present here results for the axisymmetric current. I n  this case 
equation 4 for the interfacial stress when the intrusion momentum is dominant 
becomes? 

F cc pUVR2, (A 4) 

and we assume hR2 cc Qt-8, (A 5 )  

Fg cc Apgh2R, (A 8) 

where R is the radius of the current and U = R/t. Also 

while the viscous current behaves as 

(Huppert 1982). Hence an intrusion (U)-dominated current will spread as 

with a transition time from or to a viscous-buoyancy balance given by 

On the other hand, an intrusion dominated by the external flow U ,  will spread like1 

with a transition time given by 

For the U-to-U, transition the time is given by 

t Equation numbers correspond to those given in the text for the plane current. 
$ Note that the current length again becomes constant when p = 0. 
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