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The dynamics of double-diffusive gravity currents
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Gravity currents or intrusions for which the fluid within the current contains a
substance that gives it a diffusivity different from that of its surroundings are very
common both in natural and technological applications. The interface between the
two fluids can become the site of either a ‘fingering’ or a ‘diffusive’ type of
instability, and vigorous convection and material exchange occurs (Turner 1975).
This transfer of material has several important effects upon the dynamics of the
intrusion. Horizontal momentum can be transferred across the interface to create a
stress which in many cases dominates the more conventional viscous stresses.
Entrainment into the convective plume beneath the intrusion and, in a container of
finite depth, the formation of a secondary, bottom-boundary current, creates a flow
external to the main intrusion which modifies its behaviour even more. Two cases
have been studied: the release of a fixed volume of fluid and the injection of fluid
at a constant rate for both types of interface. Several experiments on the motion
of an intrusion for which the interface is essentially non-diffusive are presented for
comparison.

1. Introduction

When light fluid is introduced into a body of denser fluid, it spreads at the surface
in a predictable way if the characteristic substance (e.g. heat, a dissolved solute) that
gives the fluids their density difference is the same (Hoult 1972; Simpson 1982 ; Turner
1974; Didden & Maxworthy 1982; Maxworthy 1983; Huppert 1982). It is also well
known that, when the two fluids have a density difference due to substances of
different diffusivities, the interface between them can become the site of a double-
diffusive instability even if the overall density difference is stable. The literature on
this latter subject, when the two fluids are not in relative horizontal motion in the
mean, is particularly rich, and has been reviewed in detail by Turner (1973, 1974)
and Huppert & Turner (1981). In only a few cases have the two problems becn
combined to study the effects of these double-diffusive processes on the motion of
the intruding fluid (Turner 1978; Ruddick & Turner 1979) or the effect of interfacial
shear on the magnitude of the fluxes across the interface (Linden 1974). In what
follows, we present experiments aimed at gaining a basic understanding of such a
system in the simplest possible circumstance : that of the intrusion of a sugar or salt
solution into an ambient fluid made denser by the addition of salt or sugar
respectively.

1t has become standard to use sugar and salt solutions in order to run experiments
on double-diffusive effects because, as is required, the diffusivity of one (sugar) is
smaller than that of the other (salt). These then serve as models for one pair of
naturally occurring substances of major interest, salt and heat, for which the
diffusivity ratio is large, of order 100 compared to three for the salt/sugar system.
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F1aure 1. (a) Apparatus for a surface gravity current or intrusion with a constant inflow rate. The
ambient fluid was either a salt solution or a sugar solution of density p,, in which case the fluid
(p,) released from behind the moveable barrier was either a sugar or salt solution respectively. (b)
Same tank as (@), but with an injector inserted so that a fixed flow rate could be released into the
ambient fluid.
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The works of Stern & Turner (1969), Turner (1975) and Shirtcliffe (1973), among
others, have shown that the basic double-diffusive properties of such systems are
qualitatively similar, although actual flux ratios and rates do depend on the
diffusivity ratio. For experimental convenience we use the sugar/salt combination
in what follows.

We also present two theoretical models which we believe help clarify the role of
these phenomena in two cases, the release of a constant volume and the injection of
a constant flux of lighter fluid. In both cases the experiments tend to support the
models to some extent, although several effects, which while not measured directly
were observed qualitatively, cloud the issue and require more detailed study in the
future.

Double-diffusive phenomena have important applications in both natural systems,
for example in the study of the dynamics of intrusions in the oceans and atmosphere,
and in technology, where problems involving the motion of liquid natural-gas spills
(Turner, private communication) and of sewage and waste water disposal (Fischer
1971) have been thought to involve them. Thus a good understanding of such effects
is desirable if we wish to say we truly understand the overall problem of their influence
on the natural environment.

2. Apparatus

The apparatus used in these experiments was similar to that used in Didden &
Maxworthy (1982 hereinafter referred to as DM), although it is different in some
details. The test tank was smaller, being 2 m long, 40 em deep and 15 cm wide (see
figure 1), and was constructed of plate glass to facilitate observation of the density
field by a shadowgraph technique.
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Two types of fluid release were used. The first, which had no counterpart in the
experiments of DM, consisted of a dammed section at one end of the tank from which
a fixed volume of light fluid could be released (figure 1a). The second consisted of
a plenum chamber and slit connected to a flow meter and fluid reservoir in order to
produce a uniform inflow of constant flow rate (figure 16), as in DM.

We have run a variety of experiments with each of these configurations, including
a series with fixed initial fluid volume, but with different values of initial depth &,
and density ratio (see below), and a series with fixed initial flow rates §. In each series
of experiments three different interface types were considered: (i) an essentially
non-diffusive interface, i.e. brine solution intruding into a brine solution of higher
density; (ii) an interface unstable to a ‘salt-fingering’ instability produced by
introducing a sugar solution over a heavier brine solution; and (iii) a ‘diffusive
interface’ that is a sharp convecting transition zone produced by running a salt
solution over a sugar solution.

The important density ratios used here include Ap/, pa, where Ap = p, —p; (see figure

1), and the ratio of the contributions of the two components to the density difference
across the interface; fJAS/aAT = R, for the ‘diffusive’ case and aAT/SAS = R, for
the ‘fingering’ interface, using the accepted nomenclature for each of these quantities.
Here the density of the faster-diffusing solution (brine) is p,(1+«AT), and that of
the slower-diffusing substance (sugar) py(1 + AS), where p, is the density of the pure
solvent, in this case water. Both R, and R, vary between unity and infinity, with
the most vigorous convection taking place when the ratio is close to unity.

In all cases the length of the gravity current was measured as a function of time
by placing both a lengthscale and a clock in the field of view of a fixed 35 mm camera
fitted with a lens of long focal length.

3. Theoretical preliminaries
3.1. Plane, diffusive or fingering gravity currents

Here we anticipate, to some extent, the results to be presented in the following
sections and discuss a series of models that appear to have some relevance to the
experimental results. We start by noting that, owing to the strong double-diffusive
instability that occurs, net amounts of material and horizontal momentum are
transferred across the interface between the two fluids. This we show diagrammatically
in figure 2, where V is a measure of the vertical velocity across the interface due to
the instability,t U is a representative velocity within the intrusion itself and is taken
equal to L/t (see figure 1), and U, is the velocity external to the intrusion caused,
for example, by entrainment into the external plume of unstable material, as will be
explained in §4. Also, as will be shown in §5, V can be estimated from the flux laws
measured by Shirtcliffe (1973) and Griffiths & Ruddick (1980), assuming that the
quasi-steady-state results reported there hold in this case.

As has been shown in DM in all experimental laboratory-scale results to date, the
so-called ‘bottom or solid boundary current’ is the one that is found, because even
a nominally free surface acts as a solid boundary owing to contained impurities. In
the present notation the magnitude for the ‘bottom’ force per unit width acting along
the whole length of the current is #; oc uUL/h, where g is the coefficient of viscosity

T Since the characteristic upward velocity Vi, and the downward velocity Vi, are of the same
order of magnitude, we use the general designation V' to represent them in the order-of-magnitude
analyses that follow.
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F1oure 2. Model of the interface between the intruding fluid moving with velocity U and the
external fluid moving with velocity U,. The instability of the interface causes an interchange of
fluid between the two, characterized by averaged vertical velocities V, and V.

and % a representative thickness of the self-similar intrusion. We can now distinguish
two extreme cases.

3.1.1. Intrusion or (U)-dominated case. Firstly, we assume that U, is small, so that
the loss of horizontal momentum from the intrusion itself dominates. Owing to this
transfer of momentum the interface is subject to a horizontal force/unit width

Fop o< pUVL, @)

so that Fp/Fg = & o« VH/v, where v = u/p is the kinematic viscosity.

As in Huppert (1982) and Maxworthy (1982), it is now convenient to consider a
fairly general release-rate relationship, in order to cover as wide a range of cases as
possible, such that the intrusion volume per unit width of the channel varies as the
power of the time: Lh o gte. (5)

Vgt
vL ’

Hence

F o

If we assume that initially the motion L(¢) is governed by the relationship for a
buoyancy-viscous balance presented in Huppert (1982) and verified experimentally
in DM and Maxworthy (1982), i.e.

L= kv {@}% t(3a+1)/5 (6)

where ¢’ = g Ap/p and g is the acceleration due to gravity. Substituting (6) into the
expression for # leads to an estimate for the transition time fyz at which the
interfacial stress becomes important:

vig’
trp = O,

"I;gq:z‘y (Ta)
where C is assumed to be of order unity.

An equivalent and somewhat more revealing expression for ¢{ry can be found by
first deriving the needed expression for the evolution of a double-diffusive gravity

current by equating the buoyancy force/unit width, from DM,
Fy oc Apgh?, (8)

to the interfacial force/unit width, (4), only, assuming that the bottom force is
negligibly small, i.e. that ¢ » tpg. Using (5) it can then be shown thatf

L = ka. {g:f/f_}} t(2a.+1)/4 (9)

t+ The axisymmetric case can be treated in a similar manner, and the results are given in the
appendix.
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At t = tpg, (6) and (9) must be identical so that an alternative to (7a) can be

derived: {k }20/(21-1){ vig’ }I/Qa—-l)
o = {%a 7b
TR kv Vsq‘z ( )

Thus, in a manner entirely equivalent to the discussion of inertial-buoyancy to
viscous—-buoyancy transitions found in Huppert (1982) and Maxworthy (1982), we
find a critical value for  of } in this case. This suggests that for & > 1, which includes
our present case of constant flow rate (¢ = 1), the transition will be from a viscously
controlled to double-diffusively controlled current. While for a« < our case of a
constant volume release (@ = 0) is included here, the opposite should occur. However,
we will show that other effects dominate before this latter possibility can be realized
and so we can make no comment on this interesting question yet.

3.1.2. Evolution dominated by the outer flow (U). The second case assumes that the
interfacial stress is dominated by the transfer of horizontal momentum from the
ambient fluid, moving with velocity U, (figure 2), into the intrusion, and that the
stress due to the slug motion itself can be ignored. Now the force balance becomes

Apgh* ~ pU_ VL,

so that the spreading relationship becomes

7.9 §
L = k/ { g q } t2a/3’
Ay (10)
and the transition time is given by
, e Vagfzq}l/(a—a) , {k;}ls/(a—“)
trr = C,, {W , where ( = k, . (11)

In this case we find a critical condition at @ = 3, with transition from a viscously
to a double-diffusively controlled current occurring when « < 3. This does not
exhaust all of the possible transitions, since it is also reasonable to expect that under
some conditions a flow initially dominated by momentum transfer from the slug itself
willbecome dominated by transfer from the ambient fluid. { Under these circumstances,
the transition time is given by

{lc—;}lz/(s-—za){ 7'q* }1/(3—2@ 12)
k, VU4,
Current dominated by U Current dominated by U,
L trr L trr
7521 20 447 ’a2 )3 Y AT TR
R v A L S S L S a0
v kg Vg UyV kg ULV
(13) (14) (15) (16)
_ -‘_7113 *i .]f.‘i 20 P 5g2 L 9'¢ ;_ ﬁ i V32§ 5
a=10 ko{ 7 } ¢ {ku Vg’ ky ULV const % N
a7 (18) (19) (20)
TaBLE |

t We will call this a U-to-U,, transition in what follows.
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with a critical value of a of 4. In this development we have deliberately ignored the
possibility of direct transitions from a state of inertia—buoyancy balance, but it should
be realized that three more transition times can be derived to account for such
possibilities! Fortunately these do not appear to play a role in the experiments to
be described, and will not be written down formally or discussed except briefly in
the case discussed in §3.2.

Asasummary, we present in table 1 the equations that will be of use in interpreting
the experimental results and to which must be added the U-to-U, transition time for

the case o = 1: K2 g'q®
k—l VoS- (21)

3.2. Plane non-diffusive gravity current

In the experiments to be described, we contrast the behaviour of the double-diffusively
controlled current with that for which the viscous bottom force is the only retarding
force. For these latter cases, Huppert (1982) gives, from (8), for &« = 1

’~3 é
L=k {qu } a, (22)
a result that has been confirmed experimentally in DM and Maxworthy (1982), while
fOII o =0 /3 %
L=k{lZhe (23)

In this latter case, release of a constant volume of dammed-up fluid results in an initial
slumping phase (Huppert & Simpson 1980), during which time the head velocity is
constant. After the head has travelled a distance about equal to ten times the length
of the original dammed region, a wave of depression, reflected from the rear wall of
the tank, catches up with it (Simpson 1982). The bulbous headwave form disappears,
and often a phase of self-similar inertial-buoyancy balance follows, in contrast with
the non-similar local control at the head characteristic of the initial motion. The
motion of this inertial phase can be found by equating the buoyancy force (8) to the
inertial force: 12
F, oc pU?h oc p—t;h so that U?oc g'h.

Under this balance the spreading law becomes
L=k {g'qhed. (24)

Then at a transition time given by

AT
{k_l} {g’2v3}
(Huppert 1982; Maxworthy 1982) the viscously controlled regime follows (equation
(23)).

4, Experimental results
4.1. Release of a fixed volume of fluid

We start with one of the most interesting results of the present study, which was

obtained for the case of a fingering interface when R, was close to unity. In figure

3, we show the length L of the intrusion from its initial position (see figure 1) as a
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FicUure 3. Release of a fixed volume of sugar solution of density 10425 over a salt solution
(pa = 1045, B, = 1-06) to form a fingering interface, and for various values of A, (see figure 1).
Curves for a non-diffusive interface, salt solution over salt solution, with the same densities are
shown for comparison. —@—, ky, = 7'5 cm; — A—, (diffusive, d), — A— (non-diffusive, nd), &, =
5 em;— X —(d),—Xx—{(nd), by = 4 ecm; —O—(d),—Q— (nd), by = 3 em; —+—(d), —+— (nd),
hy = 2 cm, The asymptotic values of L are also shown as a function of the initial depth A,; the slope
of this line —A— is unity.

function of time ¢ since the withdrawal of the retaining dam. Several effects are
immediately apparent. The intrusions with the larger initial volume lengthen rapidly
at first, at a constant velocity. However, later in their travel double-diffusive effects
become dominant and the intrusionsslow and eventually stop ! Thislatter phenomenon
is not seen in intrusions for which double-diffusive effects are absent (also plotted in
figure 3). Visual observation of these interfaces show several effects which interact
to bring about the observed behaviour. Initially the head of the wave looks essentially
the same as that for which double diffusion is absent (figure 4 (a—d or ¢). A small flux
of sugar solution can be seen leaving the intrusion, but the high inertia of the flow
and perhaps mixing and shear across the interface apparently reduce any important
dynamical influence it might have. As the intrusion begins to slow (perhaps after the
reflected wave from the endwall catches up to the head (Simpson 1982), but more
importantly under the influence of both viscous and double diffusion), the head wave
loses its bulbous shape, and convection from the main body of the intrusion becomes
intense (figure 4e or f~k). Ambient fluid is entrained into this falling plume, and
ultimately falls to the bottom of the tank and becomes a bottom gravity current,
the front of which isindicated by a dotted curvein figure 4 (k). Here the double-diffusive
configuration is reversed so that fluid with an excess of sugar is riding beneath a brine
solution. Under these circumstances a thin ‘diffusive’ interface is formed, across
which further material exchange can take place also. The details of this interesting
problem are left until later, when we study the dynamics of this interface in a related
experiment. In the present context, the appearance of the secondary gravity current
and entrainment into the plume that feeds it is important because the flow induced
by these motions interacts with the main intrusion, slows it down and eventually stops
it. Diagrammatic details of the flow field are shown in figure 5(a). In figure 5(b) we
speculate that even if the tank were very deep, so that a bottom gravity current could
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Fiaurke 5. (a) Diagrammatic view of the formation of a bottom gravity current from the heavy
fluid lost from the intrusion. The ambient fluid entrained into this region creates a backwards flow
against the general forward motion of the main intrusion. (b) Diagram to show how an opposing
flow would be formed even in a very deep tank. Entrainment into the downward-moving plume
and its feeding jet forms an external flow against the flow of the intrusion.
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Ficure 6. Intercomparison of the behaviour of the three types of interface studied: —O—,
non-diffusive; — +—, diffusive; — x —, fingering: p, = 1:045 and p; = 1040 for all except —A—,
for which p, = 1-050 and p, = 1:040 and the interface is of the diffusive type. Three values of %,
are shown: 2, 3, and 4 cm, with staggered abscissae.
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Ficurk 7. Behaviour of a fixed release (h, = 75 cm) for a fingering interface and three
density ratios: — X —, p, = 1-040; —+—, 1-0420; —O—, 1-0425. p, = 1-045.

not form, entrainment into the jet at the endwall would still create a counter flow
to oppose the motion of the surface current.

In the following figures, we compare various different cases in order to show the
relative importance of the several effects under our control. In figure 6 we display
the relative effects of the three types of interface for a series of otherwise fixed initial
conditions. Not unexpectedly, the curves are ordered by the vigour of the convection
at the interface, for a given density ratio. The non-diffusive interface eventually
travels farther in a given time, followed by the diffusive and finally the ‘fingering’
interfaces. As discussed in §5, this is presumably the result of the larger convective
mass flux that passes through the fingering interface, compared with the amount
passing through the diffusive interface for the same density difference.

In figure 7 results for a fingering interface are shown for various density ratios;
they are ordered so that the current with the larger initial density difference travels
faster. Only in the case of the smallest Ap does the current actually stop, however,
while the other two have not been followed until that state is actually reached, if
it ever is. However, in no case have we observed an extended temporal dependence
requiring the balance, between interfacial and buoyancy force, described by (17); the
flow appears to be quickly dominated by the external velocity field for the range
of parameters we have studied in the present experiments.

4.2. Injection at a constant flow rate

4.2.1. Diffusive interface. Many of the mechanisms controlling the motion of a
double-diffusive intrusion can be more clearly seen in this case. We start with a flow
rate for which the intrusion always stays well ahead of any bottom current which
may form (figure 8). With decreasing R, and hence increasingly vigorous convection,
the slopes of the curves decrease from 076 to 0-71. Two cases of a non-diffusive
interface, i.e. brine over a heavier brine solution, are shown for comparison, while
numerous other comparisons can be found in DM and Maxworthy (1982). It appears
that the motion of the slug is governed from the very beginning by the stress at the
double-diffusive interface, i.e. any transition time is less than one second or so.

In figure 9 the upper curve for the case of at least vigorous convection again
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F1GURrE 8. Intrusion with a constant inflow. Results are plotted for three values of R, showing the
decrease in slope as the vigour of the convection from the diffusive interface (salt over sugar
solution) increases. No distinet bottom gravity current is formed in these cases. The chain-dotted
lines —'*— and —*— give the predictions of Huppert’s (1982) viscous theory for the upper two
cases, —+— and —QO—. § = 0-74 cm?/s for all cases.

conforms to the results shown in figure 8, even though the flow rate is lower. In the
next-lower curve, convection produces a bottom current which just catches up with
the leading edge of the intrusion by the time it has reached the end of the tank. The
third-lower curve, at the same flow rate but with R, closer to unity, shows a small
but distinct increase in slope as the head of the gravity current passes that location,
followed by a very rapid increase when it interacts with a reflected wave which is
moving back along the newly formed interface and which was created by the
reflection of the gravity current from the endwall of the tank. The point is further
emphasized in the lowest curve, for an even smaller flow rate, where three distinct
slopes are found: » = 0-65 before the gravity-current head reaches the leading edge
of the intrusion, 0-71 after, followed by 0-9 upon interaction with the reflected wave.
These processes are shown diagrammatically in figure 10 and photographically, for
the more dramatic fingering interface, in figure 11. In the first case (figures 10a, 11a—f)
the advancing bottom current creates a strong backwards flow against the intrusion,
slowing it down (see §5). However, this current, upon interacting with the endwall,
is reflected as an internal surge, which creates a strong forward flow, which then
interacts with the intrusion to foree it forward (figures 105, 11g—).

Finally, in figure 12 we show data on what we believe to be, after much
deliberation, a transition from a current controlled by momentum loss from the
intrusion to one controlled by momentum transfer from the ambient, a U-to-U,
transition, The corresponding viscous solutions are shown on the figure as chain-dotted
lines, and they are well above the corresponding interfacial-stress-controlled curves,
as is also the case in figure 8 and 9, while a break to a slope of 0-87 is quite clear.
Further discussion of this result is left to §5.
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FiaurE 9. A series of cases at lower flow rates for the diffusive interface, and showing the increased
importance of interaction with the bottom gravity current as R, becomes closer to unity.
Coincidentally, the trajectories of the bottom current for the two cases —@— and -—A— were
virtually identical and are shown here as one line, ----. For the lower curve —A-— three regions
can be distinguished. The first, with n = 0-65, occurs before the bottom current reaches the front
of the intrusion; the second, n = 0-71, occurs after this time, and the third, = = 09, is formed
by interaction with a wave on the bottom current formed by reflection of the current head from
the endwall. The chain-dotted line gives the prediction of the viscous theory for the uppermost
case. § = 0-38 cm?/s for all cases except the lower one, for which § = 0-31 em?/s.

(@)

®)

Fieure 10. Diagrammatic view of the two main phases of flow due to interaction with the bottom
current. (2) Interaction with flow in the neighbourhood of the head, in which case U, is an
increasing function of time. (b) Interaction with the refiected wave, in which case the external flow
is reversed.
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Figurke 12. Largest value of inflow rate showing a probable transition from intrusion controlled
by momentum exchange from the slug (U) to one controlled by momentum interchange from the
external flow (U,). The chain-dotted lines give the predictions of the viscous theory for all three
cases sequentially. § = 1-57 em?/s for all cases.

4.2.2. Fingering interface. Most of the points raised above are further emphasized
when considering the more vigorously convecting fingering interface. In figure 13 note
a very small slope before the head of the bottom current reaches the leading edge
of the intrusion, followed by a more rapid increase after its passage. In this case the
bottom current is much more distinct than in the previous cases. Furthermore, in
figure 14 the intrusion outruns the bottom gravity current, but a large external
velocity U, is still produced by entrainment into the very intense convective plume
that is formed. In figure 15 we present a series of photographs of the distortions of
a dye streak, which indicates very clearly the order of magnitude of the velocities
and shears being impressed upon the motion of the upper surface flow.

Finally, we show in figure 11(k) the flow after a long time, with continued
injection. From the distortions of streaks shown there, it is apparent that a bottom
flow from right to left still persists, probably owing to the greater convective activity
near the injector, where fresh sugar solution is being introduced. The motion in the
outer fluid, close to the upper surface, is in the opposite direction and still opposes
the motion of the primary intrusion.

5. Discussion

In §4 we have presented a series of experimental curves of intrusion length L versus
time ¢t under a varicty of circumstances: for two types of release (constant volume and
constant inflow rate) and three possible types of interface between the intrusion and
its surroundings. Based on flow-visualization studies, we have found that a flow is
formed in the main body of fluid by vigorous convection from two of these interface
types. This flow, external to the main current, has a profound effect on its motion.
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Ficure 13. Low flow rate for a fingering interface, showing the change in slope as the head of the
gravity current passes the front of the wave, —O— and —@—. In the case —A— convection
is weak enough that no clear current is formed. § = 0-38 em?/s.

In what follows, we attempt to rationalize all of these results into one more-or-less
coherent framework, making use of some of the ideas introduced in §3. The one
unfortunate condition that makes detailed numerical comparisons very difficult is the
fact that one of the main variables we require, namely the external flow velocity U,
is itself a dependent variable, and its relationship to the fixed external variables has
not been measured and is unknown. From what we have already seen, it depends
strongly on the geometry of the container, and at the moment we have only
qualitative ideas about its dependence on the independent parameters of the problem.

Despite this qualification, it is satisfying that the model result presented in (19)
predicts that the intrusion should reach a constant fixed length (figure 3) under the
circumstances required of that theory. These asymptotic lengths do not scale as ¢
as predicted, possibly because U, is also a function of §. Equation (8) suggests it
should be U, oc §! to agree with the results of figure 3. However, several difficulties
cloud this deceptively simple explanation — it is unlikely that any of the quantities
assumed to be constant in the right-hand side of (8) will, in fact, be so during the
course of any one experiment, since ¢’ is increasing while V and § are decreasing with
time. Material is lost from and gained by the intrusion, in such a way that the whole
system tends to stratify more strongly (Griffiths & Ruddick 1980; Turner 1973;
MacDougall 1982). This increases the driving density difference Ap. At the same time,
the density difference driving the convection is being reduced by loss of sugar/salt
from the intrusion and its gain of salt/sugar; as a result V not only decreases, but
also becomes a function of distance along the intrusion (MacDougall 1982). For the
small changes associated with the timespan of interest here, these two effects may
be so small that they have no effect on the slug development, although subtle effects
can be seen in the constant-flow-rate experiments discussed later.

Unfortunately, the experiments were not run for a long enough time to decide
whether the lengths remained constant as the system ran down further. Such a
possibility seems remote, since it would also require U_ to remain constant, and it
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FIauRrE 14. L versus ¢ for the more vigorously convective fingering interface. At a moderate flow
rate, such that the gravity current is always well behind the front of the intrusion. § = 0-74 cm?/s.

seems that it too should decrease as the convection is reduced. This suggests that
the constant lengths found in our experiments are a transient phase of a longer-term
evolution in which the intrusion eventually spreads the whole length of the tank over
a larger timescale.

The results shown in figure 6 and 7 are also consistent with this basic idea, with
the more vigorously convecting systems, i.e. large V, tending to produce shorter slug
lengths. Also, in no case do we see an extensive region of slug-dominated interfacial
stress represented by the power-law behaviour #, (17), suggesting that if it exists it
is only a transitory phase between the inertial, head-controlled, constant-velocity
regime and one dominated by the external flow. All of this, plus the fact that U,
is also a function of time during the transition to a constant length, makes it
impossible at this stage to test either of the estimates (18) and (20) of transition time
from one regime to another.

The results found for the case of a constant inflow (¢ = 1) are more useful in
unravelling some of the problems with which we are still faced. At moderate flow rates
and for a diffusive interface (figure 8) for which the bottom gravity current is not
an important factor, the slope of the L versus ¢ lines are reassuringly close to that
predicted in (13), when the convection is the least vigorous (upper curve and possibly
the next lower). As the magnitude of the convection increases, this slope is reduced.
Since the flow apparently still remains similar, reflected in the fact that the evolution
can be described by a power law, it is unlikely that we are seeing the effect of the
outer flow, since this is an additive effect not a multiplicative one. We suggest, based
on the experimental observation of a large volume flux from the intrusion (figure 11),
that this decrease in slope is due to an effective value of § which is also a decreasing
function of time and not a constant as assumed. To rationalize this comment one can
show that the difference between the downward velocity V;, and the upward velocity
Vi at a salt—sugar interface is given by

6:3x10°8

Vo= Vo == — (@AT) R;12-6{1 _r*

JAS

for the diffusive interface, as an example, where R; is the flux ratio, which has an
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almost constant value of 0-6 in this case (Shirtcliffe 1973). This velocity difference
is positive for all cases considered here, so that there is a net loss of volume from the
intrusion as time progresses, as already noted. This loss is further enhanced by the
increasc in slug length with time, which increases the arca over which material
transport can take place. At the same time ¢’ is slowly increasing and V decreasing,
but we suggest, based on (13), that the loss of volume more than compensates for
this and causes the effective slope to be below the predicted value of . Only at the
largest value of B, or when § is large (figure 12) are these effects small, and we then
obtain close agreement with the prediction, otherwise the volume loss is an important
effect and the theory is no longer valid except as an upper bound on the observed
behaviour.

At higher flow rates (figure 12), apparently we see the real effect of the external
flow, a transition from a intrusion-dominated momentum exchange to one dominated
by the external flow. Here again, no bottom gravity current is formed, and the
external flow is caused only by entrainment into the convecting plume beneath the
intrusion. Unfortunately, the evidence for this transition is not strong, because of
the experimental error involved in determining L from the photographs. However,
the facts that the measured curves have a slope close to 0:75 and are substantially
below the viscous predictions (Huppert 1982) make us feel fairly certain that the
initial portions of the curves are of the type described by (13).

In these cases (and also for the two upper curves of figure 9 and the upper curve
of figure 13, discussed in more detail later) we have sufficient information to estimate
values for k,, (13), and ('}, (14). As mentioned before, estimation of k,, (15), and (],
(16), requires a knowledge of U, which we do not have to sufficient precision, except
to say that is of the order of 1 cm/s in many of the cases considered. We use the flux
laws measured by Shirtcliffe (1973) for the diffusive interface and by Griffiths &
Ruddick (1980) for the fingering interface to estimate 7 in each case. We ignore the
effect of shear on these fluxes, as documented by Linden (1974), although it could
be an important effect which causes some of the scatter in the calculated values of
k,. Since all of the other quantities in the equations are also known, we can then
calculate values for the multiplicative constants of interest.

In summary, Shirtcliffe (1973) gives the downward salt flux through a diffusive
interface as (AT

B =630x 1078 ———R1*¢ g om™ s71, (25)

while Griffiths & Ruddick (1980) give the downward sugar flux through a fingering
interface as 4

Fy = 550 x 10‘3(—’B~Aﬂ—s—)R;6 gem 2s L (26)
For simplicity, to estimate the vertical velocity V we assume that the flux given by
(25) or (26) is uniformly distributed over the interface according to the formula

F =pVAI

where [ is either 7' or §, and ¥ is @ or f respectively. Combining this with (25) or
(26) gives for the diffusive interface

_ 630x 1073

V (@AT)s R, 12® em/s, (27)
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and for the fingering interface

. —3
V=55O><10

(BAS )} B¢ em/s. (28)

These estimates for V are shown in table 2, and, when combined into (13) and (14),
give the estimates for k, and C; = (k,/k,)?°; these are also shown in table 2, together
with the calculated values of f1y.

Vx 10t cm/s ke, C,x 1012 trg (8)
Figure 8, case 1a 103 018 01 3

1% 3-64 0-23 13-5 04
Figure 9, case 2a 1-03 015 00026 03
2b 3-64 0-21 2-18 02
Figure 12, case 3a 103 018 01 07
3b 364 024 315 02

3¢ 562 0-26 156 005

Figure 13, case 4 391 021 2-18 0-02

Average values, b, = 021, 0, = 218 x 10712

TABLE 2

In view of similar results found for gravity currents with variable inflow (Maxworthy
1982), it is not surprising that the values of C| are so small and so scattered. This
reflects the fact that the coefficient k, is somewhat smaller than one might at first
believe based on the usual expectation that such quantities should be of order unity
in order-of-magnitude calculations such as these. Because the slopes of the two curves
are so closely matched (0-8 compared with 0-75) small variations in k; make enormous
differences in the transition time, as reflected in the fact that C, is the ratio k,/k,
raised to the power 20.

Unlike the situation in Maxworthy (1982), where we knew all of the independent
variables precisely, in the present case our estimate of V might be cause for some
concern. For example, a measurement error in the density of only 0-3% for any of
the solutions results in, typically, a 60 % error in the value of V and a corresponding
error of 139% in k,, easily sufficient to explain the variations in &, found in table 2.
At the moment the value of k, = 0-21 is the best estimate for the quantity until more
accurate and complete experiments are performed in the future. As in Maxworthy
(1982) the possibility arises that, although the flow during any one experiment
remained similar, the coefficients of proportionality in (4), (5) and (8) may in fact vary
from experiment to experiment, owing, among other things, to increased mixing at
the higher flow rates. Resolution of such a question requires detailed measurements
of velocity and density distribution within the flow, which are beyond the scope of
the present simple experiments. Similarly, the use of the results of figure 12 to
calculate values of k, and (| is difficult without a knowledge of the variation of U,
with the independent variables, and this calculation too must await a more complete
experimental investigation.

It is at the lower flow rates (figure 9) that we begin to see the dramatic effects of
the bottom gravity current. In the lower two curves the initial slope is small and close
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to £ by the suggesting control outer flow, (15). This condition is even more strongly
in evidence for the fingering interface (figure 13). In fact in this latter case, the slope
is substantially below the value of 2 predicted by our simple model. We suggest that,
as in the case of the diffusive interface, this is likely to be due to a time-dependent
decrease in the total volume of fluid in the intrusion, and hence a § that is a decreasing
function of time, the effect of which overwhelms the opposing changes in g’, ¥V and
possibly U,,, (15). The subsequent increase in slope after passage of the bottom,
secondary gravity current is harder to explain, since the outer flow U _, must increase
in magnitude owing to flow over the gravity current. This process is shown
diagrammatically in figure 10(a) and photographically in figures 11{a—f). One
possibility is that the passage of the bottom current changes the pressure field at the
bottom of the intrusion, tending to squeeze and thin it; this in turn would cause an
increase in its velocity, and hence increase the slope of the L versus? curve. This result
can be most readily seen by noting that the increase in external velocity at the bottom
of the intrusion, caused by gravity-current passage, would produce a decrease in
pressure. Hydrostatic balance within the intrusion requires that it become thinner
to accommodate this pressure decrease.

Thereafter, the nose of the bottom gravity current interacts with the endwall of
the tank and is reflected along the newly formed interface as an internal hydraulic
jump. This jump travels back along the tank and interferes further with the slowly
advancing intrusion. Now, however, U, has changed direction in the flow over this
wave, so that the external flow now not only accelerates the motion of the intrusion
(figures 105, 11 g—j) but also squeezes it further, and the slope is even larger than that
for a viscously controlled current (lower two curves of figure 9). In the case of the
fingering interface (lower two curves of figure 13), this latter interaction took place
after the completion of the experiment and was not recorded. For both types of
interface (upper two curves of figure 9 and upper curve of figure 13) the less-active
interfaces propagate with slopes close to the value of § predicted in §3. Finally, the
fingering interface at a moderate flow rate (figure 14) conforms to the idea that the
net loss of intrusion volume is responsible for the decreased slope.

6. Conclusions

We have measured the spreading rates of two-dimensional double-diffusive intru-
sions, considering both ‘fingering” and ‘diffusive’ interfaces and two types of fluid
release, a constant volume and constant flow rate. In all cases considered, the transfer
of mass and momentum across the interface quickly dominates the motion of the
intrusion, and under suitable circumstances simple order-of-magnitude arguments
can be used to develop equations that describe the motion of the leading edge of the
intrusion with reasonable accuracy under some circumstances. The major unknown
factor is the magnitude of the external velocity imposed upon the layer by entrain-
ment into the convective plume beneath the intrusion. In a relatively shallow tank,
such as ours, this convective plume can also, under some circumstances, create a
secondary, bottom gravity current, and the flow created by the motion of the latter
can also interact with the main intrusion and affect its motion in a manner that,
although it cannot be modelled at present, can be understood qualitatively and in
a way that gives hope for a suitable model in the future.

The work reported here was performed while I was visiting the Research School
of Earth Sciences, Australian National University, Canberra, as the guest of Professor
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Appendix. Axisymmetric double-diffusive gravity currents

For the sake of completeness and because of its’likely importance in natural and
technological flows, we present here results for the axisymmetric current. In this case
equation 4 for the interfacial stress when the intrusion momentum is dominant
becomest

Foc pUVR?, (A4)
and we assume hR? oc Qtf, (A 5)
where R is the radius of the current and U = R/t. Also
F, oc Apgh®R, (A 8)
while the viscous current behaves as
2
R = ky Y o (46)
(Huppert 1982). Hence an intrusion (U)-dominated current will spread as
_ kﬂ{g Q } fep+1)/6 (A 9)
with a transition time from or to a viscous—buoyancy balance given by
B k;,A}M/(l-ﬂ){Qw}l/(l—ﬂ)
by = { k, Vg . (A 7b)
On the other hand, an intrusion dominated by the external flow U, will spread like}
- kﬂ{ A } 12415, (A 10)
with a transition time given by
k{zA}40/(5—ﬂ){ Ugo Vs}l/(5—ﬂ)
== —5 . 1
tTR { kﬂ V5Qgr3 (A 1)
For the U-to-U,, transition the time is given by
30/{2f—5) 6 1/{26-5)
tyg = {ZC“?} {U:X:V} (A 12)
ky g

1 Equation numbers correspona to those given in the text for the plane current.
1 Note that the current length again becomes constant when g = 0.



282 T. Mazxworthy

REFERENCES
DippEN, N. & MaxworTHy, T. 1982 The viscous spreading of plane and axisymmetric gravity
currents. J. Fluid Mech. 121, 27-42.
Fiscuer, H. B. 1971 Thedilution of an undersea sewage cloud by salt fingers. Water Res. 5, 909-915.

GrrrriTHs, R. W. & Ruppick, B. R. 1980 Accurate fluxes across a salt-sugar finger interface
deduced from direct density measurements. J. Fluid Mech. 99, 85-95.

Houwr, D. P. 1972 Oil spreading on the sea. Ann. Rev. Fluid Mech. 4, 341-368.

Hurrert, H. E. 1982 The propagation of two-dimensional and axisymmetric viscous gravity
currents over a rigid horizontal surface. J. Fluid Mech. 121, 43-58.

Huprert, H. E. & Sivpson, J. E. 1980 The slumping of gravity currents. J. Fluid Mech. 99,
785-799.

Hurpert, H. E. & TUurNER, J. S. 1981 Double-diffusive convection. J. Fluid Mech. 106, 299-329.
LinDEN, P. E. 1974 Salt fingers in steady flow. Geophys. Fluid Dyn. 6, 1-27.

MacDouvearr, T. 1982 A model of a frictionless double-diffusive gravity current on a horizontal
surface. Rep. R.E.S., Austr. Natl Univ., Canberra.

MaxworTHYy, T. 1983 Gravity current with variable inflow. J. Fluid Mech. 128, 247-257.

Rubpick, B. & TURNER, J. S. 1979 The vertical length scale of double-diffusive intrusions. Deep-Sea
Res. 26, 903-913.

SHIRTCLIFFE, T. G. L. 1973 Transport and profile measurements of the diffusive interface in double
diffusive convection with similar diffusivities. J. Fluid Mech. 57, 27-43.

Simpson, J. 8. 1982 Gravity currents in the laboratory, atmosphere and ocean. Ann. Rev. Fluid
Mech. 14, 213-234.

SteErN, M. E. & TurNER, J. 8. 1969 Salt fingers and convecting layers. Deep-Sea Res. 16, 497-511.
TURNER, J. 8. 1973 Buoyancy Effects in Fluids. Cambridge University Press.

TurNER, J. 8. 1974 Double-diffusive phenomena. Ann. Rev. Fluid Mech. 6, 37-56.

TURrNER, J. 8. 1978 Double-diffusive intrusions into a density gradient. J. Geophys. Res. 83, 2887.



